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Abstract

An alternative to the boundary element method for external domains is

proposed, whereby the elements are located on the boundary, but the points

of observation are taken inside the boundary. The modification removes the

non-integrable singularities from the domain of integration. It also

provides a simple way of avoiding the ill-conditioning that occurs at

fictitious eigenfrequencies. The off-boundary BEM is applied to scattering

of a plane, time-harmonic, longitudinal wave by a spherical cavity in an

unbounded linearly elastic, isotropic, homogeneous solid. Results obtained

by the off-boundary apDroach are compared with exact results and with

results obtained by the conventional BEM approach. The off-boundary

approach produces excellent results with less effort than the conventional

BEM.
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Introduction

N .

This paper is concerned with scattering of time-harmonic waves by

compact inhomogeneities in an elastic solid. In the calculation procedure a

boundary integral equation is solved numerically by the boundary element

method (BEM). An alternative to the usual boundary element method is

employed. The alternative approach is applicable to cavities or fixed

rigid bodies of general shape iocated in linearly elastic, isotropic,

homogeneous solids, but the specific results reported herein are for

spherical cavities. The alternative approach eliminates the cumbersome

singularities associated with the usual approach to BEM, and it also

eliminates the problems encountered at the so called fictitious

eigenfrequencies.

First a brief presentation of the usual approach to solving these

problems using BEM is presented. This section relies heavily on references

to recent works. Then a discussion of common difficulties, including

fictitious eigenfrequencies, is given - again relying heavily on available

references. The fictitious eigenfrequencies coincide with the

eigenfrequencies of a conjugate solid body, shaped like the cavity. For a

sphere the frequency equation is presented and the relevant frequencies have

been computed. Next the alternative BEM approach is described and numerical

results obtained using this procedure on spherical cavities are presented

for cases both near and away from frequencies at which difficulties are

experienced with th1 usual method. Finally, advantages of the new approach

are summarized.
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Exact analytical solutions for scattering of harmonic waves by

spherical scatterers have been studied extensively for problems in

acoustics, electromagnetic scattering [1], and scattering of elastic waves

[2]-[4]. These exact solutions are useful for a variety of well known

aoplicAtionS. Reccntly, the exacc solutions for elastodynamic scattering

have been used as benchmarks for developing numerical procedures and

computer programs for solving scattering problems with more complicated

geometries [5]-[8]. These recent applications include both time [9] and

frequency domain formulations [10].

Summary of the Usual Avoroach

The scatterer, the incident wave and the scattered field are shown in

Fig. i. Note that the surface of the scatterer is denoted by S and the

regions inside and outside the scatterer by Di and De, respectively. The

incident field is time-harmonic, but the factor exp(-iwt), where W is the

circular frequency, is being omitted.

Reference [10] gives a detailed exposition of the way BEM is typically

applied to elastodynamic boundary value problems. The description in

reference (101 is applicable for both cavities and inclusions. For the

present purpose we will confine our interest to cavities, but the new

approach is also relevant for fixed rigid inclusions.

In the usual manner, the total displacement field is expressed as the

sum of the incident and the scattered fields:N.

**~* ~ *% % -. -~ - .--- . -U
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()- u(X) + (1) 

The integral representation for the total displacement field is based on the

use of the basic singular elastodynamic displacement solution, which may be

written as

u ij (x,',) _!_M _6 ij + exa 2[i4i + (xikr ikLr 1]

where

r - - xl (3)

kL-o/cL , c- (A + 2M)/p (4a,b)

kT  C -cT ,1 (5a,b)

The expression given by Eq.(2) represents the displacement at position x in

the xi direction due to a unit point load applied at x -x in the

x -direction,

Now let us consider scattering by a cavity whose surface is free of

tractions. By the use of Eq.(2), the integral representation for the total

field may be written as

N' ~ ' > M tS ' -~.e <ff~ W .



A*FW **. I.-*-* -

4

.f~4(~xu.x~dcx+ -f0 x e D'(6a)

US Ij U ( ) x c D e I(6b)
where

Tij~ - [A a Ur6j + AU + a ,n(7
Ojax ij ii aXj Uik] k (7)

In Eq. (7), n(y) is the unit outward normal from De

Equations (6a) and (6b) are called integral re~resentations because the

source points, X, lie on the surface of the scatterer, while the field

points, x, lie either inside or outside S. To-obtain an integral equation,

the field point is also taken to lie on S. The result is

Cjj(x)uj(x) f T j T ~ .(~d + U I(X), x f S , (8)

where

Cij C) - lim T..(x,,X)dS y(9)
S(x,e)

Here S(x,c) is the part of the surface of the sphere of radius e, contained

in D e and centered at x. The BEM now solves the integral equation (8) by

discretizing S into elements (also called surface patches), assuming a shape

function for u(x) on each element, and numerically evaluating the integrals

N LN
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over each surface element. By sequentially moving the point of observation,

x, to lie on each surface element, a set of linear algebraic equations is

obtained and solved for the surface displacements. Once the surface

displacements are known, they may be substituted into a discretized version

eof equation (6b) to obtain the field at any point in D

The principal difficulty associated with the above procedure is that

Tij(xy) is extremely singular and, in fact, non-integrable, when x-x.

Again, reference [10] gives a detailed exposition of the singularities and

some techniques to circumvent them. Another difficulty typically

encountered with this method is the enormous amount of computer time

required if the frequency of the harmonic incident wave is high.

Convergence at high frequency requires very fine meshes, so the costs of

building and solving the set of algebraic equations rises exponentially.

Nonetheless, this approach has been successfully applied to a wide variety

of scattering problems and is currently increasing in popularity.

Discussion of Fictitious Eigenfreguencies

Still another difficulty associated with the usual BEM approach is that

the solution of the integral equation is non-unique at certain frequencies

[7]. These frequencies coincide with the eigenfrequencies of the interior

problem with boundary conditions of zero displacement (the Dirichlet

problem) [12]. This non-uniqueness is a result of the method of solution

only. The physical problem does have a unique solution, hence the term

fictitious eigenfrequencies. V
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At these frequencies the boundary integral equations are ill- I

conditioned but some approaches have been suggested to circumvent the

difficulties, and obtain numerical solutions [7],[11]-[16]. One of the more

popular approaches [7] involves formulating the BEM equations for both the

exterior Neumann (zero tractions) and the interior Dirichlet (zero

displacements) problems. The full set of equations for the exterior Neumann

problem are then "constrained" by including equations from the interior

Dirichlet problem so that a set of overdetermined equations results, and the

least squares method or a similar technique can be applied to obtain

solutions. Some of the other schemes first address the non-uniqueness of

the integral equation before applying BEM techniques [12].

As noued above, the fictitious eigenfrequencies for the cavity problem

coincide with the eigenfrequencies of the corresponding solid body, shaped

like the cavity, but whose external surface is under zero displacement

conditions. For a solid sphere the latter eigenfrequencies can easily be

calculated, and hence we can obtain the fictitious eigenfrequencies for

scattering by a spherical cavity.

Figure 2 shows the system of spherical coordinates that will be used. For

the scattering problem the fields are axially symmetric, and hence we also

consider axially symmetric vibrations of the solid sphere, i.e.,

uO = 0. Using the notation of Ref.[3], expressions for the radial and polar

displacements of any mode are written as

U~n) I C n1 + De 7 J Pn(cosS) (10)r r n71 n 72 n

, 0

or r S1
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1 Ia

((n)l dPrn(cosO)
r~n n 81 n 82 (11

where

(1) 4 (2

e71 kLr)71 - nJnkLr) kLr Jn+l(kLr) (12)

(1)i72 (kTr) - n(n+l)jn(kTr) (13)

(72

£81 (kLr) - Jn(kLr) (14)

(l ((kTr) . (n+l)Jn(kTr) kTr Jn+l(kTr) (15)
82 -

Here kL and kT are defined by Eqs.(4a) and (5a), jn( ) are spherical Bessel

functions ot the first kind o order n, Pn (cosO) are Legendre Polynomials of

order n, and C and D are constants.

The case of spherical symmetry corresponds to n - 0. The component

U(° ) then vanishes identically, and Eq (10) red,,ces to

sin(k r)-(k r)cos(krr)
U(°) - CokL k) (16)
r OL(kLr)

The condition U(°) - 0 at r - a then yields the frequency equationn

tan(kLr) - kLr (17) I

L

The solutions to Eq.(17) are listed in Table I.

UJ

Ia
'N
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For n - 0 the conditions U(n) _ 0 and U (n) _ 0 at r - a yield two
r a

homogeneous equations for the constants Cn and D n . The condition that the

determinant of the coefficients must vanish yields the frequency equation in

the form

71 (kLa)e8  (kTa) -e 7  (kTa)c~ (wa) - 0 (18)

For a specific value of n, Eq.(18) has an infinite number of roots. For two

values of Poisson's ratio, v, and for n - 1 and n - 2, the first five roots

are also listed in Table I. It is noted that the first spherically

symmetric mode (n - 0) does not produce the lowest eigenfrequency. At least

* four lower eigenfrequencies occur, as indicated in Table I.

Alternative to the Usual Approach

Equations (6a) and (6b) are general, they can be used, in principle,

for cavities of any shape. If the point of observation, x, is taken inside

the cavity instead of on the surface of the cavity, then equation (6a) is

applicable. Now the surface of the cavity is discretized and shape

functions for u(x) over each element are assumed, exactly as before. As

before, we select as many points of observation as there are surface

elements, but now all the observation points are inside the cavity. By this

procedure we again generate a set of linear algebraic equations which can be

solved to give the set of surface displacements exactly as in the usual

approach. In fact the two methods should give the same results. One

advantage is that the integrals are not singular now since x o for x e D

1
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This technique can also be used to calculate solutions at the

fictitious eigenfrequencies. The set of equations generated by this method

will differ from those generated by the usual method and will yield good

results without the use of the least squares method or the interior

Dirichlet BEM equation. In principle the points x can be chosen

arbitrarily, but there are indications that the observation points should

not be selected too far from the surface of the cavity so that the dominance

of the diagonal terms is retained. This method can also be used to easily

generate the additional equations used in a least squares approach, as will

be demonstrated in the next section.

Comparison of Results and Discussion

To verify the results of the alternative method, several cases of plane

longitudinal-waves-incidence on a spherical cavity in an unbounded elastic

solid have been considered. Figure 2 shows the geometry. First a frequency

for which the usual BEM approach yields a solution that can be compared to

an available exact solution, has been considered. The surface displacements

and the backscattered field are shown in Fig. 3 and Fig. 4, respectively.

The solutions by both the alternative and the usual BEM compare well with

the exact solution (exact results borrowed fiom Ref.[5]).

Next a problem where the usual BEM approach fails was considered.

Figures 5-7 show the radial surface displacements as calculated for three

closely spaced non-dimensional frequencies by the same BEM programs as used

for the results of Figs. 3 and 4. These frequencies are all close to the

5"
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first eigenfrequency for v - 0.41 and n - 1 shown in Table I. The exact

solution is not shown in Figs. 5-7, but the results presented in Fig. 5

indicate large changes in the solution obtained by the usual BEM approach

for very minor changes in the non-dimensional frequency, a behavior which is

typical near fictitious eigenfrequencies. The surface displacements for the

same three non-dimensional frequencies as calculated by two modified

approaches are shown in Figures 6 and 7. In Fig. 6 all of the observation

points were moved inside of the cavity; an equal number of observation

points and surface elements were used. In Fig.7 all but one of the

observation points were taken on the surface, at the center of each element.

One additional observation point was taken at the center of the o'vity and

was used to generate an overdetermined system of equations which was then

solved using the least squares method. The agreement between Figs. 6 and 7

can be further improved by using more elements for the calculations.

The precise location of the observation points inside the cavity is not

critical, but ill-conditioning can result if the points are chosen to lie

too far away from the surface. For all of the cases presented in this paper

using the alternative approach, the distance from the center of the cavity

was 0.9a, and the points were located on iines joining the center of the

elements and the center of the cavity. The surface displacement, u(x) was

assumed constant over each element. Cases with the observation points

further away from the surface (closer to the center) have also been 16

successfully worked out, but the limits of the approach have not been

tested.

% %t |ft'
.I



Unfortunately the new technique will not work for scattering from

cracks because there is no Di for the observation point to be located in.

For crack problems techniques similar to those in Refs.i[0],[16]-[17] are

recommended.
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Summary and Conclusions

The straightforward alternative to the usual BEM discussed in this

paper eliminates two substantial difficulties typically associated with

solving wave scattering problems using the BEM. By taking the points of

observation inside of the cavity (or fixed rigid body) and following the

usual discretization and integration procedures employed in the BEM, both

the singularities of the integrands and the difficulties associated with

fictitious eigenfrequencies are eliminated. The precise location of the

points inside the cavity is not critical and hence adjustment of their

position to avoid ill-conditioning is possible. There are indications that

the observation points should not be located too far from the surface of the

cavity, but the maximum distance that can be tolerated may vary from problem

to problem. p

The alternative procedure produced very satisfactory results when

applied to spherical cavities in unbounded elastic media, even when the

usual BEM failed to give satisfactory results.
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Table I: Eigenfrequencies for axially symmetric vibration modes of a solid
sphere of radius a, with zero displacement conditions at r - a.

01 2 3 4 5

kLa 4.493 7.725 10.904 14.066 17.220

kTa 7.782 13.380 18.886 24.363 29.826

kLa 2.303 3.581 5.345 5.962 7.215
n-l ------------------------------------------------------------------------------ i'

kTa 3.989 6.202 9.257 10.326 12.497

kLa 3.334 4.466 6.160 7.269 8.077

n2--.----- - ------ -. ----- -------- .-------------------------
kTa 5.775 7.735 10.669 12.590 13.990

- 0.41

k~a 4.493 7.725 10.904 14.066 17.220

kTa 7.782 13.380 18.886 24.363 29.826

kLa 1.914 2.564 3.657 4.870 5.900

kTa 4.901 6.564 9.363 12.469 15.106

kLa 2.571 3.452 4.285 5.446 6.650
n-2 -----------------------------------------------------------------------

kTa 6.583 8.838 10.971 13.943 17.027

5',%
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Fig. I Incident field, scatterer and scattered field
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Fig. 2 Spherical geometry
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